Wednesday, October 12, 2016

Bewegende Gemiddelde Ma ( Q )

Bewegende gemiddelde - MA afbreek bewegende gemiddelde - MA As SMA voorbeeld, kyk na 'n sekuriteit met die volgende sluitingsdatum pryse meer as 15 dae: Week 1 (5 dae) 20, 22, 24, 25, 23 Week 2 (5 dae) 26, 28, 26, 29, 27 Week 3 (5 dae) 28, 30, 27, 29, 28 A 10-dag MA sou gemiddeld uit die sluitingsdatum pryse vir die eerste 10 dae as die eerste data punt. Die volgende data punt sal daal die vroegste prys, voeg die prys op dag 11 en neem die gemiddelde, en so aan, soos hieronder getoon. Soos voorheen verduidelik, MA lag huidige prys aksie omdat dit gebaseer is op vorige pryse hoe langer die tydperk vir die MA, hoe groter is die lag. So sal 'n 200-dag MA 'n veel groter mate van lag as 'n 20-dag MA het omdat dit pryse vir die afgelope 200 dae bevat. Die lengte van die MA om te gebruik, hang af van die handel doelwitte, met korter MA gebruik vir 'n kort termyn handel en langer termyn MA meer geskik vir 'n lang termyn beleggers. Die 200-dag MA word wyd gevolg deur beleggers en handelaars, met onderbrekings bo en onder hierdie bewegende gemiddelde beskou as belangrike handel seine wees. MA ook mee belangrik handel seine op hul eie, of wanneer twee gemiddeldes kruis. 'N stygende MA dui daarop dat die sekuriteit is in 'n uptrend. terwyl 'n dalende MA dui daarop dat dit in 'n verslechtering neiging. Net so, is opwaartse momentum bevestig met 'n lomp crossover. wat gebeur wanneer 'n korttermyn-MA kruisies bo 'n langer termyn MA. Afwaartse momentum bevestig met 'n lomp crossover, wat plaasvind wanneer 'n kort termyn MA kruisies onder 'n langer termyn MA.8.4 Moving gemiddelde modelle Eerder as om te gebruik afgelope waardes van die voorspelling veranderlike in 'n regressie, 'n bewegende gemiddelde model gebruik afgelope voorspelling foute in 'n regressie-agtige model. y c et theta e theta e kolle theta e, waar et is wit geraas. Ons noem dit 'n MA (Q) model. Natuurlik, ons het nie die waardes van et waarneem, so dit is nie regtig regressie in die gewone sin. Let daarop dat elke waarde van yt gesien kan word as 'n geweegde bewegende gemiddelde van die afgelope paar voorspel foute. Maar bewegende gemiddelde modelle moet nie verwar word met bewegende gemiddelde smoothing ons in Hoofstuk 6. 'n bewegende gemiddelde model bespreek word gebruik vir die voorspelling van toekomstige waardes, terwyl bewegende gemiddelde smoothing word gebruik vir die bepaling van die tendens-siklus van verlede waardes wees. Figuur 8.6: Twee voorbeelde van data uit bewegende gemiddelde modelle met verskillende parameters. Links: MA (1) met y t 20e t 0.8e t-1. Regs: MA (2) met y t e t-e t-1 0.8e t-2. In beide gevalle, is e t normaalverdeelde wit geraas met gemiddelde nul en variansie een. Figuur 8.6 toon 'n mate van data uit 'n MA (1) model en 'n MA (2) model. Die verandering van die parameters theta1, kolle, thetaq resultate in verskillende tyd reeks patrone. Soos met outoregressiemodelle, sal die afwyking van die term fout et net verander die skaal van die reeks, nie die patrone. Dit is moontlik om 'n stilstaande AR (p) model as 'n MA (infty) model skryf. Byvoorbeeld, met behulp van herhaalde vervanging, kan ons hierdie bewys vir 'n AR (1) model: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext einde verstande -1 Dit phi1 Dit 1, sal die waarde van phi1k kleiner te kry as k groter word. So uiteindelik kry ons yt et phi1 e phi12 e phi13 e cdots, 'n MA (infty) proses. Die omgekeerde gevolg het as ons 'n paar beperkinge op te lê op die MA parameters. Toe die MA-model is omkeerbaar genoem. Dit wil sê, dat ons 'n omkeerbare MA (Q) proses as 'n AR (infty) proses kan skryf. Omkeerbare modelle is nie net om ons in staat stel om van MA modelle om modelle AR. Hulle het ook 'n paar wiskundige eienskappe wat maak dit makliker om te gebruik in die praktyk. Die inverteerbaarheid beperkings is soortgelyk aan die stasionariteit beperkings. Vir 'n MA (1) model: -1lttheta1lt1. Vir 'n MA (2) model: -1lttheta2lt1, theta2theta1 GT-1, theta1 - theta2 Dit 1. Meer ingewikkelde voorwaardes hou vir qge3. Weereens, R sal sorg vir hierdie beperkings wanneer die beraming van die models. Autoregressive bewegende gemiddelde ARMA (p, q) Modelle vir Tydreeksanalise - Deel 2 Deur Michael Saal-Moore op 24 Augustus 2015 in Deel 1 beskou ons die outoregressiewe model van Om p, ook bekend as die AR (p) model. Ons lei dit as 'n uitbreiding van die ewekansige loop model in 'n poging om bykomende reeks korrelasie in finansiële tydreekse verduidelik. Uiteindelik het ons besef dat dit was nie buigsaam genoeg om werklik al die outokorrelasie te vang in die laaste pryse van Amazon Inc. (AMZN) en die SampP500 VSA Equity Index. Die primêre rede hiervoor is dat beide van hierdie bates is voorwaardelik heteroskedastic. wat beteken dat hulle nie-stasionêre en het tydperke van wisselende variansie of wisselvalligheid groepering, wat nie in ag geneem word deur die AR (p) model geneem. In toekomstige artikels sal ons uiteindelik opbou tot die outoregressiewe geïntegreerde bewegende gemiddelde (ARIMA) modelle, asook die voorwaardelik heteroskedastic modelle van die boog en GARCH families. Hierdie modelle sal ons met ons eerste realistiese pogings tot vooruitskatting batepryse. In hierdie artikel, maar ons gaan die bewegende gemiddelde van orde q model, bekend as MA (Q) bekend te stel. Dit is 'n komponent van die meer algemene ARMA model en as sulks het ons nodig het om dit te verstaan ​​voordat verdere beweeg. Ek raai jy die vorige artikels gelees in die Tydreeksanalise versameling as jy dit nog nie gedoen. Hulle kan al hier gevind word. Bewegende gemiddelde (MA) Models van orde q Rasionaal 'n bewegende gemiddelde model is soortgelyk aan 'n outoregressiewe model, behalwe dat in plaas daarvan om 'n lineêre kombinasie van die verlede tyd reeks waardes, dit is 'n lineêre kombinasie van die afgelope wit geraas terme. Intuïtief, beteken dit dat die MA model sien soos ewekansige wit geraas skokke direk by elke huidige waarde van die model. Dit is in teenstelling met 'n AR (p) model, waar die wit geraas skokke slegs indirek gesien. via regressie op vorige terme van die reeks. 'N Belangrike verskil is dat die MA-model net ooit sal sien die laaste Q skokke vir 'n spesifieke MA (Q) model, terwyl die AR (p) model al voor skokke in ag sal neem, al is dit in 'n decreasingly swak wyse. Definisie Wiskundig die MA (Q) is 'n lineêre regressiemodel en is insgelyks gestruktureer om AR (p): Moving Gemiddelde Model van orde q 'n tydreeksmodel, is 'n bewegende gemiddelde model van orde q. MA (Q), indien: begin xt wt beta1 w ldots betaq w end Waar is wit geraas met E (WT) 0 en variansie sigma2. As ons kyk na die agterste Shift-operateur. (Sien 'n vorige artikel) dan kan ons herskryf bogenoemde as 'n funksie phi van: begin xt (1 beta1 beta2 2 ldots betaq Q) wt phiq () wt einde Ons sal gebruik maak van die phi-funksie in die latere artikels te maak. Tweede Orde Properties Soos met AR (p) die gemiddelde van 'n MA (Q) proses is nul. Dit is maklik om te sien as die gemiddelde is bloot 'n som van middel van wit geraas terme, wat al self nul is. begin teks enspace MUX E (xt) som E (Wi) 0 einde begin teks enspace sigma2w (1 beta21 ldots beta2q) einde teks enspace rhok links 1 teks enspace k 0 som betai beta / sumq beta2i teks enspace k 1, ldots, Q 0 teks enspace k GT Q einde reg. Waar beta0 1. Was nou gaan 'n paar gesimuleerde data te genereer en gebruik dit om correlograms skep. Dit sal die formule hierbo vir rhok ietwat meer beton. Simulasies en Correlograms MA (1) Kom ons begin met 'n MA (1) proses. As ons 'beta1 0.6 verkry ons die volgende model: Soos met die AR (p) modelle in die vorige artikel kan ons R te gebruik om so 'n reeks te boots en dan trek die correlogram. Sedert weve het 'n baie oefening in die vorige Tydreeksanalise artikel reeks van die uitvoering van erwe, sal ek die R-kode skryf ten volle, eerder as om te verdeel dit: Die produksie is soos volg: Soos ons hierbo gesien het in die formule vir rhok , vir k GT Q, al outokorrelasies moet nul wees. Sedert Q 1, moet ons 'n beduidende hoogtepunt op k1 en dan onbelangrik pieke na daardie sien. As gevolg van steekproefneming vooroordeel ons moet verwag om 5 (effens) beduidende pieke sien op 'n monster outokorrelasie plot. Dit is presies wat die correlogram wys vir ons in hierdie geval. Ons het 'n beduidende hoogtepunt op k1 en dan onbelangrik pieke vir k GT 1, behalwe by K4 waar ons 'n effens beduidende piek. Trouens, dit is 'n nuttige manier om te sien of 'n MA (Q) model toepaslik is. Deur die neem van 'n blik op die correlogram van 'n bepaalde reeks kan ons sien hoeveel opeenvolgende nie-nul lags bestaan. As Q so lags bestaan ​​dan kan ons tereg probeer om 'n MA (Q) model geskik is om 'n bepaalde reeks. Aangesien ons bewyse uit ons gesimuleerde data van 'n MA (1) proses, is nou van plan om te probeer en pas 'n MA (1) model vir ons gesimuleerde data. Ongelukkig is daar isnt 'n ekwivalente ma opdrag om die outoregressiewe model ar opdrag in R. In plaas daarvan, moet ons die meer algemene ARIMA opdrag gebruik en stel die outoregressiewe en geïntegreerde komponente aan nul. Ons doen dit deur die skep van 'n 3-vektor en die opstel van die eerste twee komponente (die autogressive en geïntegreerde parameters, onderskeidelik) na nul: Ons ontvang 'n paar nuttige uitset van die ARIMA opdrag. Eerstens, kan ons sien dat die parameter is beraam as hoed 0,602, wat baie naby aan die werklike waarde van beta1 0.6. In die tweede plek is die standaard foute reeds bereken vir ons, maak dit maklik om vertrouensintervalle bereken. Derdens, ontvang ons 'n geskatte variansie, log-waarskynlikheid en Akaike Inligting Criterion (wat nodig is vir model vergelyking). Die groot verskil tussen ARIMA en ar is dat ARIMA skat 'n onderskepdrie termyn omdat dit nie die gemiddelde waarde van die reeks af te trek. Vandaar ons nodig het om versigtig te wees wanneer die uitvoering van voorspellings met behulp van die ARIMA opdrag. Wel later terug te keer na hierdie punt. As 'n vinnige check op pad was om vertrouensintervalle vir hoed bereken: Ons kan sien dat die 95 vertrouensinterval bevat die ware parameter waarde van beta1 0.6 en daarom het ons die model kan oordeel 'n goeie passing. Dit is duidelik dat hierdie moet verwag word, aangesien ons die data nageboots in die eerste plek Hoe dinge verander as ons die teken van beta1 om -0,6 verander Kom dieselfde analise uit te voer: Die produksie is soos volg: Ons kan sien dat by k1 ons het 'n beduidende hoogtepunt in die correlogram, behalwe dat dit toon negatiewe korrelasie, as wed verwag van 'n MA (1) model met negatiewe eerste koëffisiënt. Weereens al pieke buite k1 is onbelangrik. Kom ons pas 'n MA (1) model en skat die parameter: hoed -0,730, wat is 'n klein onderskat van beta1 -0,6. Ten slotte, kan bereken die vertroue interval: Ons kan sien dat die ware parameter waarde van beta1-0.6 is vervat in die 95 vertrouensinterval, die verskaffing van ons met bewyse van 'n goeie model pas. MA (3) Kom ons loop deur dieselfde prosedure vir 'n MA (3) proses. Hierdie keer moet ons beduidende hoogtepunte op k verwag, en onbelangrik pieke vir k GT 3. Ons gaan die volgende koëffisiënte gebruik: beta1 0.6, beta2 0.4 en beta3 0.2. Kom na te boots 'n MA (3) proses van hierdie model. Ive het die aantal ewekansige monsters tot 1000 in hierdie simulasie, wat dit makliker maak om die ware outokorrelasie struktuur sien, ten koste van die maak van die oorspronklike reeks moeiliker om te interpreteer: Die produksie is soos volg: Soos verwag die eerste drie pieke is beduidende . Maar so is die vierde. Maar ons kan tereg daarop dui dat hierdie mag wees as gevolg van steekproefneming vooroordeel soos ons verwag om te sien 5 van die pieke wat beduidende buite KQ. Kom nou pas 'n MA (3) model om die data te probeer en skatting parameters: Die skattings hoed 0,544, hoed 0,345 en hoed 0,298 is naby aan die ware waardes van beta10.6, beta20.4 en beta30.3, onderskeidelik. Ons kan produseer ook vertrouensintervalle gebruik van die onderskeie standaard foute: In elk geval nie die 95 vertrouensintervalle die ware parameter waarde bevat en kan ons aflei dat ons 'n goeie passing met ons MA (3) model, soos verwag kan word. Finansiële inligting in Deel 1 beskou ons Amazon Inc. (AMZN) en die SampP500 VSA Equity Index. Ons toegerus die AR (p) model vir beide en gevind dat die model nie in staat was om effektief te vang die kompleksiteit van die reeks korrelasie, veral in die rolverdeling van die SampP500, waar langtermyn-geheue effekte blyk teenwoordig te wees. Ek sal nie stip die kaarte weer vir die pryse en outokorrelasie, in plaas Siek verwys u na die vorige post. Amazon Inc. (AMZN) Kom ons begin deur te probeer om 'n seleksie van MA (Q) pas modelle om AMZN, naamlik met Q in. Soos in Deel 1, goed gebruik quantmod om die daaglikse pryse vir AMZN aflaai en dan sit hulle in 'n log opbrengste stroom sluitingstyd pryse: Noudat ons die log opbrengste stroom kan ons die ARIMA opdrag gebruik om in te pas MA (1), MA (2) en MA (3) modelle en dan skat die parameters van elke. Vir MA (1) ons het: Ons kan die residue van die daaglikse log opbrengste en die toegeruste model plot: Let daarop dat ons 'n paar beduidende hoogtepunte op lags k2, K11, K16 en k18, wat aandui dat die MA (1) model is onwaarskynlik dat 'n goeie passing vir die gedrag van die AMZN log opbrengste wees, aangesien dit lyk nie soos 'n verwesenliking van wit geraas. Kom ons probeer 'n MA (2) model: Beide van die skattings vir die beta koëffisiënte is negatief. Kom ons plot die residue weer: Ons kan sien dat daar byna nul outokorrelasie in die eerste paar lags. Ons het egter vyf effens beduidende hoogtepunte op lags K12, K16, K19, k25 en K27. Dit is suggestief dat die MA (2) model is die opneem van 'n groot deel van die outokorrelasie, maar nie almal van die lang-geheue effekte. Hoe gaan dit met 'n MA (3) model Weereens, kan ons die residue Plot: Die MA (3) residue plot lyk byna identies aan dié van die MA (2) model. Dit is nie verbasend nie, as 'n nuwe parameter is die toevoeging van 'n model wat skynbaar weg verduidelik baie van die korrelasies met korter lags, maar dit sal nie veel van 'n uitwerking op die langer termyn loop. Al hierdie getuienis is suggestief van die feit dat 'n MA (Q) model is onwaarskynlik handig al die korrelasie in isolasie te wees. ten minste vir AMZN. SampP500 As jy onthou, in Deel 1 het ons gesien dat die eerste orde differenced daaglikse log opbrengste struktuur van die SampP500 besit baie beduidende pieke op verskillende lags, beide kort en lang. Dit verskaf bewyse van beide voorwaardelike heteroskedasticity (dit wil sê wisselvalligheid groepering) en langtermyn-geheue effekte. Dit lei ons tot die gevolgtrekking dat die AR (p) model onvoldoende is om al die outokorrelasie teenwoordig te vang was. Soos weve bo die MA (Q) model gesien was onvoldoende om bykomende reeks korrelasie in die residue van die toegeruste model om die eerste orde vang differenced daaglikse log prys reeks. Ons sal nou probeer om die MA (Q) model om die SampP500 pas. Mens kan vra waarom ons doen dit as ons weet dat dit is onwaarskynlik dat 'n goeie passing wees. Dit is 'n goeie vraag. Die antwoord is dat ons nodig het om te sien presies hoe dit is nie 'n goeie passing, want dit is die uiteindelike proses sal ons volgende wanneer ons teëkom baie meer gesofistikeerd modelle, wat potensieel moeiliker om te interpreteer. Kom ons begin deur die verkryging van die data en dit na 'n eerste orde differenced reeks logaritmies getransformeer daaglikse sluitingspryse soos in die vorige artikel: Ons gaan nou 'n MA (1), MA (2) en MA (3) model aan te pas die reeks, soos ons hierbo gedoen het vir AMZN. Kom ons begin met MA (1): Kom ons maak 'n plot van die residue van hierdie toegeruste model: Die eerste beduidende piek plaasvind op k2, maar daar is baie meer aan k in. Dit is duidelik nie 'n besef van wit geraas en so moet ons die MA (1) model as 'n potensiële goeie passing vir die SampP500 verwerp. Maak die situasie te verbeter met MA (2) Weereens, kan 'n plot van die residue van hierdie toegeruste MA (2) model: Terwyl die piek by K2 verdwyn (soos wed verwag), is ons nog steeds links met die beduidende hoogtepunte op baie meer lags in die residue. Weereens, vind ons die MA (2) model is nie 'n goeie passing. Ons moet verwag nie, want die MA (3) model, minder korrelasie by K3 as vir die MA (2) te sien, maar ons moet ook verwag weereens geen vermindering in verdere lags. Ten slotte, kan 'n plot van die residue van hierdie toegeruste MA (3) model: Dit is presies wat ons sien in die correlogram van die residue. Vandaar die MA (3), met die ander modelle hierbo, is nie 'n goeie passing vir die SampP500. Volgende stappe Weve nou ondersoek twee groot tydreeksmodelle in detail, naamlik die Autogressive model van orde p, AR (p) en dan bewegende gemiddelde van orde q, MA (Q). Weve gesien dat hulle is albei in staat te verduidelik weg van die outokorrelasie in die residue van eerste orde differenced daaglikse log pryse van aandele en indekse, maar wisselvalligheid groepering en langtermyn-geheue effek voortduur. Dit is uiteindelik tyd om ons aandag te draai na die kombinasie van hierdie twee modelle, naamlik die outoregressiewe bewegende gemiddelde van orde p, q, ARMA (p, q) om te sien of dit die situasie verder sal verbeter. Ons sal egter moet wag tot die volgende artikel vir 'n volledige bespreking Michael Saal-Moore Mike is die stigter van QuantStart en is betrokke by die kwantitatiewe finansiële sektor vir die afgelope vyf jaar, in die eerste plek as 'n quant ontwikkelaar en later as 'n quant handelaar konsultasie vir verskansing funds.2.1 bewegende gemiddelde modelle (MA modelle) tydreeksmodelle bekend as ARIMA modelle kan die volgende insluit outoregressiewe terme en / of bewegende gemiddelde terme. In Week 1, het ons geleer 'n outoregressiewe term in 'n tydreeks model vir die veranderlike x t is 'n vertraagde waarde van x t. Byvoorbeeld, 'n lag 1 outoregressiewe termyn is x t-1 (vermenigvuldig met 'n koëffisiënt). Hierdie les definieer bewegende gemiddelde terme. 'N bewegende gemiddelde termyn in 'n tydreeks model is 'n verlede fout (vermenigvuldig met 'n koëffisiënt). Laat (WT omslaan N (0, sigma2w)), wat beteken dat die w t is identies, onafhanklik versprei, elk met 'n normaalverdeling met gemiddelde 0 en dieselfde afwyking. Die 1 ste orde bewegende gemiddelde model, aangedui deur MA (1) is (xt mu wt theta1w) Die 2de orde bewegende gemiddelde model, aangedui deur MA (2) is (xt mu wt theta1w theta2w) Die Q de orde bewegende gemiddelde model , aangedui deur MA (Q) is (xt mu wt theta1w theta2w kolle thetaqw) Nota. Baie handboeke en sagteware programme definieer die model met negatiewe tekens voor die terme. Dit nie die geval verander die algemene teoretiese eienskappe van die model, hoewel dit flip die algebraïese tekens van beraamde koëffisiënt waardes en (unsquared) terme in formules vir ACFs en afwykings. Jy moet jou sagteware kyk om te kontroleer of negatiewe of positiewe tekens is gebruik om korrek te skryf die beraamde model. R gebruik positiewe tekens in sy onderliggende model, soos ons hier doen. Teoretiese Eienskappe van 'n tydreeks met 'n MA (1) Model Let daarop dat die enigste nie-nul waarde in die teoretiese ACF is vir lag 1. Alle ander outokorrelasies is 0. So 'n monster ACF met 'n beduidende outokorrelasie net by lag 1 is 'n aanduiding van 'n moontlike MA (1) model. Vir belangstellende studente, bewyse van hierdie eienskappe is 'n bylae tot hierdie opdragstuk. Voorbeeld 1 Veronderstel dat 'n MA (1) model is x t 10 w t 0,7 w t-1. waar (WT omslaan N (0,1)). So het die koëffisiënt 1 0.7. Die teoretiese ACF gegee word deur 'n plot van hierdie volg ACF. Die plot net aangedui is die teoretiese ACF vir 'n MA (1) met 1 0.7. In die praktyk, 'n monster gewoond gewoonlik verskaf so 'n duidelike patroon. Die gebruik van R, gesimuleerde ons N 100 monster waardes gebruik te maak van die model x t 10 w t 0,7 w t-1 waar w t IID N (0,1). Vir hierdie simulasie, 'n tydreeks plot van die steekproefdata volg. Ons kan nie sê baie van hierdie plot. Die monster ACF vir die gesimuleerde data volg. Ons sien 'n skerp styging in lag 1 gevolg deur die algemeen nie-beduidende waardes vir lags afgelope 1. Let daarop dat die monster ACF kom nie ooreen met die teoretiese patroon van die onderliggende MA (1), en dit is dat al outokorrelasies vir lags afgelope 1 sal wees 0 . 'n ander voorbeeld sou 'n effens verskillende monster ACF hieronder getoon, maar sal waarskynlik dieselfde breë funksies. Theroretical Eienskappe van 'n tydreeks met 'n MA (2) model vir die MA (2) model, teoretiese eienskappe is soos volg: Let daarop dat die enigste nie-nul waardes in die teoretiese ACF is vir lags 1 en 2. outokorrelasies vir hoër lags is 0 . So, 'n monster ACF met 'n beduidende outokorrelasies by lags 1 en 2, maar nie-beduidende outokorrelasies vir hoër lags dui op 'n moontlike MA (2) model. IID N (0,1). Die koëffisiënte is 1 0.5 en 2 0.3. Want dit is 'n MA (2), sal die teoretiese ACF nul waardes het net by lags 1 en 2. Waardes van die twee nie-nul outokorrelasies is 'n plot van die teoretiese ACF volg. Soos byna altyd die geval is, monster data gewoond te tree heeltemal so perfek as teorie. Ons gesimuleerde N 150 monster waardes vir die model x t 10 w t 0,5 w t-1 0,3 w t-2. waar w t IID N (0,1). Die tydreekse plot van die data volg. Soos met die tydreeks plot vir die MA (1) voorbeeld van die data, kan nie vir jou sê baie daaruit. Die monster ACF vir die gesimuleerde data volg. Die patroon is tipies vir situasies waar 'n MA (2) model nuttig kan wees. Daar is twee statisties beduidende spykers by lags 1 en 2, gevolg deur nie-beduidende waardes vir ander lags. Let daarop dat as gevolg van steekproeffout, die monster ACF nie die teoretiese patroon presies ooreenstem. ACF vir Algemene MA (Q) Models n eiendom van MA (Q) modelle in die algemeen is dat daar nie-nul outokorrelasies vir die eerste Q lags en outokorrelasies 0 vir alle lags GT q. Nie-uniekheid van verband tussen waardes van 1 en (rho1) in MA (1) Model. In die MA (1) model, vir enige waarde van 1. die wedersydse 01/01 gee dieselfde waarde vir so 'n voorbeeld, gebruik 0,5 vir 1. en gebruik dan 1 / (0,5) 2 vir 1. Jy sal kry (rho1) 0.4 in beide gevalle. Om 'n teoretiese beperking genoem inverteerbaarheid bevredig. Ons beperk MA (1) modelle om waardes met absolute waarde minder as 1. In die voorbeeld net gegee, 1 0.5 sal 'n toelaatbare parameter waarde wees nie, terwyl 1 1 / 0.5 2 nie. Inverteerbaarheid van MA modelle 'n MA-model word gesê omkeerbare te wees indien dit algebraïes gelykstaande aan 'n konvergerende oneindige orde AR model. Bevestig deur die, bedoel ons dat die AR koëffisiënte daal tot 0 as ons terug beweeg in die tyd. Inverteerbaarheid is 'n beperking geprogrammeer in die tyd reeks sagteware wat gebruik word om die koëffisiënte van modelle te skat met MA terme. Dit is nie iets wat ons gaan vir die data-analise. Bykomende inligting oor die inverteerbaarheid beperking vir MA (1) modelle word in die bylaag. Gevorderde teorie Nota. Vir 'n MA (Q) model met 'n bepaalde ACF, daar is net een omkeerbare model. Die noodsaaklike voorwaarde vir inverteerbaarheid is dat die koëffisiënte waardes sodanig dat die vergelyking 1- 1 y. - Q y q 0 het oplossings vir y wat buite die eenheidsirkel val. R-kode vir die voorbeelde in Voorbeeld 1, ons geplot die teoretiese ACF van die model x t 10 w t. 7W t-1. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik word om die teoretiese ACF plot was: acfma1ARMAacf (Mac (0,7), lag. max10) 10 lags van ACF vir MA (1) met theta1 0.7 lags0: 10 skep 'n veranderlike genaamd lags wat wissel van 0 tot 10. plot (lags, acfma1, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (1) met theta1 0.7) abline (H0) voeg n horisontale as om die plot die eerste opdrag bepaal die ACF en slaan dit in 'n voorwerp vernoem acfma1 (ons keuse van naam). Die plot opdrag (die 3de gebod) erwe lags teenoor die ACF waardes vir lags 1 tot 10. Die ylab parameter etikette die y-as en die belangrikste parameter sit 'n titel op die plot. Om te sien die numeriese waardes van die ACF net gebruik die opdrag acfma1. Die simulasie en erwe is gedoen met die volgende opdragte. xcarima. sim (N150, lys (Mac (0,7))) Simuleer N 150 waardes van MA (1) xxc10 voeg 10 tot gemiddelde 10. Simulasie gebreke maak beteken 0. plot (x, typeb, mainSimulated MA (1) data) ACF (x, xlimc (1,10), mainACF vir gesimuleerde steekproefdata) In Voorbeeld 2, ons geplot die teoretiese ACF van die model xt 10 wt 0,5 w t-1 0,3 w t-2. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik was acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (2) met theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, lys (Mac (0.5, 0.3))) xxc10 plot (x, typeb, hoof Gesimuleerde MA (2) Series) ACF (x, xlimc (1,10), mainACF vir gesimuleerde MA (2) Data) Bylae: Bewys van eiendomme van MA (1) vir belangstellende studente, hier is bewyse vir teoretiese eienskappe van die MA (1) model. Variansie: (teks (xt) teks (mu wt theta1 w) 0 teks (WT) teks (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wanneer h 1, die vorige uitdrukking 1 W 2. Vir enige h 2, die vorige uitdrukking 0 . die rede hiervoor is dat per definisie van onafhanklikheid van die WT. E (w k w j) 0 vir enige k j. Verder, omdat die w t het intussen 0, E (w j w j) E (w j 2) w 2. Vir 'n tydreeks, Pas hierdie resultaat aan die ACF hierbo kry. 'N omkeerbare MA model is die een wat geskryf kan word as 'n oneindige orde AR model wat konvergeer sodat die AR koëffisiënte konvergeer na 0 as ons oneindig terug in die tyd beweeg. Wel demonstreer inverteerbaarheid vir die MA (1) model. Ons het toe plaasvervanger verhouding (2) vir w t-1 in vergelyking (1) (3) (ZT wt theta1 (Z - theta1w) wt theta1z - theta2w) op tydstip t-2. vergelyking (2) word Ons het toe plaasvervanger verhouding (4) vir w t-2 in vergelyking (3) (ZT wt theta1 Z - theta21w wt theta1z - theta21 (Z - theta1w) wt theta1z - theta12z theta31w) As ons voortgaan ( oneindig), sou ons die oneindige orde AR model kry (ZT wt theta1 Z - theta21z theta31z - theta41z kolletjies) Nota egter dat as 1 1, die koëffisiënte die lags van Z vermenigvuldig sal toeneem (oneindig) in grootte as ons terug beweeg in tyd. Om dit te voorkom, moet ons 1 LT1. Dit is die voorwaarde vir 'n omkeerbare MA (1) model. Oneindige Bestel MA model In week 3, goed sien dat 'n AR (1) model kan omgeskakel word na 'n oneindige orde MA model: (xt - mu wt phi1w phi21w kolle phik1 w kolle som phij1w) Hierdie opsomming van verlede wit geraas terme is bekende as die oorsaaklike voorstelling van 'n AR (1). Met ander woorde, x t is 'n spesiale tipe MA met 'n oneindige aantal terme terug gaan in die tyd. Dit is 'n oneindige orde MA of MA () genoem. 'N Eindige orde MA is 'n oneindige orde AR en enige eindige orde AR is 'n oneindige orde MA. Onthou in Week 1, het ons opgemerk dat 'n vereiste vir 'n stilstaande AR (1) is dat 1 LT1. Kom ons bereken die Var (x t) met behulp van die oorsaaklike verteenwoordiging. Die laaste stap gebruik 'n basiese feit oor meetkundige reeks wat vereis (phi1lt1) anders sal die reeks divergeer. NavigationA voetnoot in Pankratz (1983). op bladsy 48, sê: Die etiket bewegende gemiddelde is tegnies foutief aangesien die MA koëffisiënte negatiewe mag wees en mag nie vat om eenheid. Hierdie etiket is wat gebruik word deur konvensie. Box en Jenkins (1976) sê ook iets soortgelyks. Op bladsy 10: Die naam bewegende gemiddelde is ietwat misleidend, want die gewigte 1, - theta, - theta, ldots, - theta, wat die as vermeerder nie totale eenheid moet nie nodig dat positief wees. Maar hierdie naam is algemeen gebruik, en daarom het ons in diens het. Ek hoop dit help. As jy kyk na 'n nul-gemiddelde MA proses: Xt varepsilont theta1 varepsilon cdots thetaq varepsilon, dan kan jy die regter kant as wat verwant is aan 'n geweegde bewegende gemiddelde van die varepsilon terme beskou, maar waar die gewigte hoef te som tot 1. Let daarop dat elke waarde van yt kan beskou word as 'n geweegde bewegende gemiddelde van die afgelope paar voorspel foute. Soortgelyke verduidelikings van die term kan gevind word in talle ander plekke. Let daarop dat Graeme Walsh wys daarop in kommentaar hierbo dat dit dalk sy oorsprong met Slutsky (1927) die opsomming van Random veroorsaak as 'n bron van Sikliese Prosesse 1 Hyndman, R. J. en ATHANASOPOULOS, G. (2013) vooruitskatting: beginsels en praktyk. Artikel 04/08. otexts / FPP / 8/4. Verkry op 22 September 2013.


No comments:

Post a Comment